

EHB-3-80-100 ROTOR BRAKE

Rotor brakes are a complement to the aerodynamic braking system of the rotor of a wind turbine. This active brake is hydraulic applied and spring released, meaning that the braking force depends on the hydraulic pressure. The hydraulic pressure is generated by a compact closed HPU system design, which can be connected to the PLC of the wind turbine by Harting connectivity.

DATASHEET SPECIFICATION	
ARTICLE NUMBER	20-1553
MAX. PRESSURE	25 MPa
MAX. CLAMPING FORCE	377 kN
MAX. BRAKING FORCE	300 kN
FRICTION COEFFICIENT μ	0,4 [-]
DISC THICKNESS	35 mm
WEIGHT	120 kg
BRAKE HOUSE MATERIAL	EN-GJS-500-7
TEMPERATURE RANGE	-40 / +70 °C
MOTOR TYPE	Asynchronous IE2
MOTOR POWER	0,37 kW
MOTOR VOLTAGE	230 / 400 V
MOTOR FREQUENCY	50 / 60 Hz
MOTOR PHASES	3
TANK CAPACITY	1,5 L
PUMP CAPACITY (AT 1500 RPM)	0,8 L/min

FEATURES

Several lining materials, including sintered metal and organic

Applicable for several disc thicknesses

Air gap brake pads according to customer specification

Drain ports for oil leakage, preventing pads contamination

Integrated low maintenance closed loop HPU system

Harting connectivity for easy installation

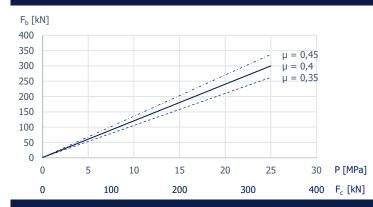
Pressure switches and sensors for pressure monitoring

Handpump integration for emergency operations

CALCULATION LEGENDA

F_b = Braking Force

 $\mathbf{F_c}$ = Clamping Force


 μ = Friction Coefficient

 $\mathbf{M_b}$ = braking Torque

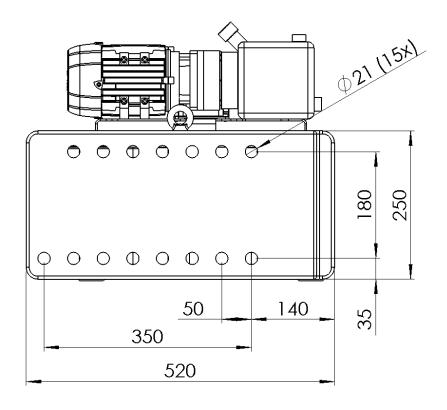
z = Number of Brakes

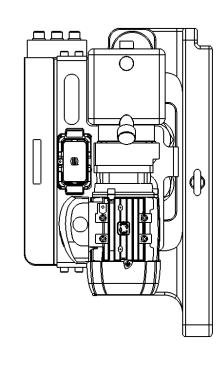
D_{av} = Effective Diameter of brake

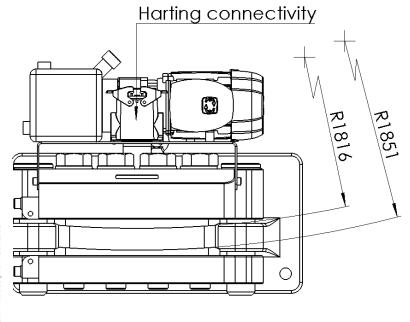
BRAKING FORCE GRAPH

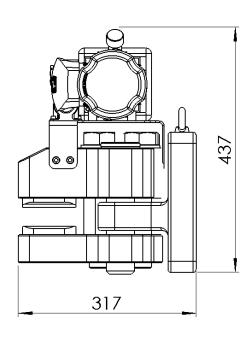
BRAKE FORCE CALCULATION

$$\mathbf{F_b} = 2 \cdot \mathbf{F_C} \cdot \mathbf{\mu}^*$$


$$\mathbf{F_c} = \mathbf{A} \cdot \mathbf{P} \cdot \mathbf{10} \, [\mathbf{N}]$$


$$\mathbf{M_b} = \mathbf{z} \cdot \mathbf{F_b} \cdot \frac{\mathbf{D_{av}}}{2}$$


*External factors have not been taken into consideration



GENERAL ARRANGEMENTS

